

sales@AHSystems.com www.AHSystems.com

TYPICAL CONVERSION FORMULAS

LOG -> LINEAR VOLTAGE

dBm to dBµA

 $dB\mu A$ to dBm

 $dB\mu A$ to $dB\mu V$

dBµV to dBµA

 $dB\mu A = dBm + 73$

 $dBm = dB\mu A - 73$

 $dB\mu V = dB\mu A + 34$

 $dB\mu A = dB\mu V - 34$

 $dB\mu V = dB\mu A + 20log(Z)$

 $dB\mu A = dB\mu V - 20log(Z)$

 $dB\mu A = dBm - 10log(Z) + 90$

 $dBm = dB\mu A + 10 log(Z) - 90$

(50Ω)

(50Ω)

(50Ω)

(50Ω)

FIELD STRENGTH & POWER DENSITY

dB μ V to Volts	$V = 10^{((dB\mu V - 120)/20)}$	dBµV/m to V/m	V/m = 10 (((dBµV/m) -120) / 20)
Volts to $dB\mu V$	$dB\mu V = 20 \log(V) + 120$	V/m to dBµV/m	dBμV/m = 20 log(V/m) + 120
dBV to Volts	$V = 10^{(dBV/20)}$	$dB\mu V/m$ to $dBmW/m^2$	$dBmW/m^2 = dB\mu V/m - 115.8$
Volts to dBV	dBV = 20log(V)	dBmW/m ² to dB μ V/m	$dB\mu V/m = dBm W/m^2 + 115.8$
dBV to $dB\mu V$	$dB\mu V = dBV + 120$	dBµV/m to dBµA/m	$dB\mu A/m = dB\mu V/m - 51.5$
dB μ V to dBV	$dBV = dB\mu V - 120$	dBµA/m to dBµV/m	dBμV/m = dBμA + 51.5
LOG -> LINEAR CURRENT		dBµA/m to dBpT	$DBpT = dB\mu A/m + 2$
dBµA to uA	$\mu A = 10^{(dB \mu A/20)}$	dBpT to dBµA/m	$dB\mu A/m = dBpT - 2$
μA to dBμA	$dB\mu A = 20 \log(\mu A)$	W/m ² to V/m	V/m = SQRT(W/m ² * 377)
dBA to A	$A = 10^{(dBA/20)}$	V/m to W/m ²	W/m ² = (V/m) ² / 377
A to dBA	dBA = 20log(A)	μT to A/m	A/m = μT / 1.25
dBA to dBµA	dBμA = dBA + 120	A/m to μT	μT = 1.25 * A/m
dBµA to dBA	dBA = dBμA -120	E-FIELD ANTENNAS	
LOG ->	> LINEAR POWER	Correction Factor	$dB\mu V/m = dB\mu V + AF$
dBm to Watts	$W = 10^{((dBm - 30)/10)}$	Field Strength	V/m = $\sqrt{\frac{30 * watts * Gain_{numeric}}{meters}}$
Watts to dBm	dBm = 10log(W) + 30	Required Power	Watts = $(V/m * meters)^2$ 30 * Gain numeric
dBW to Watts	$W = 10^{(dBW / 10)}$		
Watts to dBW	dBW = 10log(W)	LOOP ANTENNAS	
dBW to dBm	dBm = dBW + 30	Correction Factors	$dB\mu A/m = dB\mu V + AF$
dBm to dBW	dBW = dBm - 30	Assumed E-field for shielded loops	$dB\mu V/m = dB\mu A/m + 51.5$
TERM CONVERSIONS			$dBpT = dB\mu V + dBpT/\mu V$
dBm to dB μ V	$dB\mu V = dBm + 107 (50\Omega)$ $dB\mu V = dBm + 10log(Z) + 90$	CURRENT P	ROBES
$dB\mu V$ to dBm	dBm = dB μ V - 107 (50Ω) dBm = dB μ V - 10log(Z) - 90	Correction Factor	$dB\mu A = dB\mu V - dB_{(ohm)}$

Power needed for injection probe given voltage(V) into 50 Ω load and Probe Insertion Loss (I_)

_{Watts = 10} ((I_L + 10log(V²/50))/10)